

Individualized assessment of the probability for developing in-field solid tumors from radiation therapy for testicular cancer

M. Mazonakis¹, E. Lyraraki², J. Damilakis¹

¹Department of Medical Physics, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece

²Department of Radiotherapy and Oncology, University Hospital of Heraklion, Heraklion, Crete, Greece

Introduction - Purpose

- Testicular cancer is a highly treatable malignant disease with a 10-year survival rate of more than 95 %.
 (L. B. Travis, et al. J Natl Cancer Inst 2010;102:1114-30)
- Testicular cancer mostly affects young adults aged 15-44 years. (R.H.A. Verhoeven, et al. Ann Oncol 2013;24:508-13)
- The objective of this study was to combine individualized dosimetric data with a non-linear risk model for the patient-specific estimation of the probability for solid cancer development after radiotherapy for testicular cancer.

3-d conformal radiotherapy

- Ten patients with early stage testicular cancer underwent a treatment planning CT scan.
- Treatment plans consisting of AP and PA fields delivering 20 Gy in 10 fractions to the para-aortic lymph node region were generated.
- The 3-d plans were calculated for use on a linac producing 6 and 18 MV X-rays (Primus, Siemens, Germany).

Differential dose-volume histograms (DVHs)

- Differential DVHs were computed for the liver, stomach and colon which were partly exposed to primary radiation.
- The histograms were analyzed by using a bin width of 1 cGy for all organs of interest.

Organ equivalent dose (OED) calculation with a mechanistic model

$$OED = \frac{1}{V_t} \sum_{i} V_{D_i} \frac{exp(-a_i' D_i)}{a_i' R} \left[1 - 2R + R^2 exp(a_i' D_i) - (1 - R)^2 \exp\left(\frac{a_i' R}{1 - R} D_i\right) \right]$$

- V_t : total volume of the organ of interest,
- V_{Di} : organ volume receiving a radiation dose of D_i ,
- a'_i : organ-specific cell-kill parameter,
- R: organ-specific repopulation parameter.

U. Schneider, et al. Theor. Biol. Med. Modell. 2011;8:27

Lifetime attributable risk (LAR) of cancer development

$$LAR = \sum_{age_e+L}^{age_{a,max}} \beta' OED \exp \left[\gamma_e (age_e - 30) + \gamma_a \ln \left(\frac{age_a}{75} \right) \right] \frac{S(age_a)}{S(age_e)}$$

- β' :initial slope of radiation-induced cancer at the low-dose region,
- L: free latent period of 5 years,
- age_e : patient's age during radiotherapy,
- age_a : attained patient's age ($age_{a,max} = 75$ years),
- γ_e , γ_a : organ-specific age parameters,
- $S(age_a)/S(age_e)$: probability of a healthy male to survive from age_e to age_a .

U. Schneider, et al. Theor. Biol. Med. Modell. 2011;8:27

Results

OED calculations

Organ of interest	OED range (cGy)
Stomach	37.3 - 79.8
Colon	251.3 - 500.4
Liver	43.0 - 70.3

Dose values correspond to a target dose of 20 Gy.

Results

LAR estimation

Conclusions

- The organ-dependent lifetime cancer risk associated with radiotherapy for testicular cancer varies widely by the organ dose magnitude and the age of the irradiated patient.
- The accurate knowledge of the patient-specific probability for developing solid tumors may facilitate treatment decisions and improve the risk management.